Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Towards sensible photo voltaic hydrogen manufacturing – a man-made photosynthetic leaf-to-farm problem. Chem. Soc. Rev. 48, 1908–1971 (2019).
Reece, S. Y. et al. Wi-fi photo voltaic water splitting utilizing silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).
Li, Z. et al. Scalable fabrication of perovskite photo voltaic cells. Nat. Rev. Mater. 3, 18017 (2018).
Schäppi, R. et al. Drop-in fuels from daylight and air. Nature 601, 63–68 (2022).
Sokol, Okay. P. & Andrei, V. Automated synthesis and characterization methods for photo voltaic gas manufacturing. Nat. Rev. Mater. 7, 251–253 (2022).
Waldrop, M. M. The chips are down for Moore’s legislation. Nature 530, 144–147 (2016).
Yu, X. et al. Graphene-based good supplies. Nat. Rev. Mater. 2, 17046 (2017).
Kang, J., Tok, J. B.-H. & Bao, Z. Self-healing tender electronics. Nat. Electron. 2, 144–150 (2019).
Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
Andersen, T. R. et al. Scalable, ambient ambiance roll-to-roll manufacture of encapsulated giant space, versatile natural tandem photo voltaic cell modules. Vitality Environ. Sci. 7, 2925–2933 (2014).
Fakharuddin, A., Jose, R., Brown, T. M., Fabregat-Santiago, F. & Bisquert, J. A perspective on the manufacturing of dye-sensitized photo voltaic modules. Vitality Environ. Sci. 7, 3952–3981 (2014).
Kaltenbrunner, M. et al. Versatile excessive power-per-weight perovskite photo voltaic cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).
Chen, J., Dong, C., Idriss, H., Mohammed, O. F. & Bakr, O. M. Metallic halide perovskites for solar-to-chemical gas conversion. Adv. Vitality Mater. 10, 1902433 (2019).
Andrei, V., Reuillard, B. & Reisner, E. Bias-free photo voltaic syngas manufacturing by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).
Zhang, H. et al. A sandwich-like organolead halide perovskite photocathode for environment friendly and sturdy photoelectrochemical hydrogen evolution in water. Adv. Vitality Mater. 8, 1800795 (2018).
Suter, S. & Haussener, S. Optimizing mesostructured silver catalysts for selective carbon dioxide conversion into fuels. Vitality Environ. Sci. 12, 1668–1678 (2019).
Corridor, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 discount catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).
Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Skinny insulating tunneling contacts for environment friendly and water resistant perovskite photo voltaic cells. Adv. Mater. 28, 6734–6739 (2016).
Crespo-Quesada, M. et al. Metallic-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016).
Wang, M. et al. Defect passivation utilizing ultrathin PTAA layers for environment friendly and secure perovskite photo voltaic cells with a excessive fill issue and eradicated hysteresis. J. Mater. Chem. A 7, 26421–26428 (2019).
Jeng, J.-Y. et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid photo voltaic cells. Adv. Mater. 26, 4107–4113 (2014).
Andrei, V. et al. Scalable triple cation combined halide perovskite–BiVO4 tandems for bias-free water splitting. Adv. Vitality Mater. 8, 1801403 (2018).
Cheng, W.-H. et al. Monolithic photoelectrochemical machine for direct water splitting with 19% effectivity. ACS Vitality Lett. 3, 1795–1800 (2018).
Younger, J. L. et al. Direct solar-to-hydrogen conversion by way of inverted metamorphic multi-junction semiconductor architectures. Nat. Vitality 2, 17028 (2017).
Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D. & Moon, J. Methods for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48, 4979–5015 (2019).
Kim, T. W. & Choi, Okay.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for photo voltaic water splitting. Science 343, 990–994 (2014).
Hankin, A. et al. From millimetres to metres: the crucial function of present density distributions in photo-electrochemical reactor design. Vitality Environ. Sci. 10, 346–360 (2017).
Hou, Y., Zuo, F., Dagg, A. P., Liu, J. & Feng, P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a versatile photoanode for environment friendly photoelectrochemical water oxidation. Adv. Mater. 26, 5043–5049 (2014).
Nitopi, S. et al. Progress and views of electrochemical CO2 discount on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).
Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable photo voltaic formate manufacturing from carbon dioxide and water. Nat. Vitality 5, 703–710 (2020).
Kasap, H., Achilleos, D. S., Huang, A. & Reisner, E. Photoreforming of lignocellulose into H2 utilizing nanoengineered carbon nitride underneath benign circumstances. J. Am. Chem. Soc. 140, 11604–11607 (2018).
Weraduwage, S. M. et al. The connection between leaf space progress and biomass accumulation in Arabidopsis thaliana. Entrance. Plant Sci. 6, 167 (2015).
Achilleos, D. S. et al. Photo voltaic reforming of biomass with homogeneous carbon dots. Angew. Chem. Int. Ed. Engl. 59, 18184–18188 (2020).
Nishiyama, H. et al. Photocatalytic photo voltaic hydrogen manufacturing from water on a 100 m2-scale. Nature 598, 304–307 (2021).
Sahu, A., Yadav, N. & Sudhakar, Okay. Floating photovoltaic energy plant: a assessment. Renew. Maintain. Vitality Rev. 66, 815–824 (2016).
Chun, Okay.-Y. et al. Extremely conductive, printable and stretchable composite movies of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).
de Lima, R. L. P., Paxinou, Okay. C., Boogaard, F., Akkerman, O. & Lin, F.-Y. In-situ water high quality observations underneath a large-scale floating photo voltaic farm utilizing sensors and underwater drones. Sustainability 13, 6421 (2021).
Liu, X. et al. 20.7% Extremely reproducible inverted planar perovskite photo voltaic cells with enhanced fill issue and eradicated hysteresis. Vitality Environ. Sci. 12, 1622–1633 (2019).
Gorham, W. F. A brand new, basic artificial technique for the preparation of linear poly-p-xylylenes. J. Polym. Sci. A1 4, 3027–3039 (1966).
Lu, H. et al. Single-source bismuth (transition steel) polyoxovanadate precursors for the scalable synthesis of doped BiVO4 photoanodes. Adv. Mater. 30, 1804033 (2018).
Andrei, V. et al. Dataset for ‘Floating perovskite-BiVO4 units for scalable photo voltaic gas manufacturing’. Apollo Repository, College of Cambridge https://doi.org/10.17863/CAM.82770 (2022).